COURSE INFORMATON					
Course Title	Code	Semester	L+P+L Hour	Credits	ECTS
Algorithms	CIS 504		3 + 0 + 0	3	10

Prerequisites

-

Language of Instruction	English
Course Level	Master's Degree
Course Type	Core
Course Coordinator	Dr. Öğr. Üyesi Engin Kandıran
Instructors	Prof. Dr. Bekir Tevfik Akgün, Prof. Dr. Haluk Bingöl, Dr. Öğr. Üyesi Engin Kandıran
Assistants	
Goals	This course introduces a second programming language and uses it to teach students how to analyze and design algorithms and measure their complexities.
Content	Introduction to Python as a second language to Java. Design and analysis of algorithms, O-notation. Searching, sorting, graph algorithms.

Learning Outcomes	Programme Learning Outcomes	Teaching Methods	Assessmen t Methods
1) Analyze and design algorithms and measure their complexities	3,4	1,2,3	A,C
 Recognize the theoretical foundations of the algorithms 	3,4	1,2,3,4	A,E
 Develop efficient algorithms for the solution of real-life computational problems. 	3,4	1,4	A,E
4) Implement algorithms.	3,4	1,4	A,E
5) Analyzes searching and sorting algorithms.	3,4	1,2,4	A,C,E
6) Learn fundamentals of python programming language	3,4	1,2,4	A,C,E

Teaching Methods:

1: Lecture, 2: Question-Answer, 3: Discussion, 4: Lab Work

Assessment Methods: A: Testing, B: Presentation, C: Homework, D: Project, E: Laboratory

COURSE CONTENT				
Week	Topics	Study Materials		
1	Python for Java programmers.			
2	Data Structures in Python			
3	Growth of Functions (Complexity measures (Big-O))			
4	Divide and Conquer Approach			
5	Sorting Algorithms (Insertion Sort, Merge Sort)			
6	Sorting Algorithms (Quick Sort, Heap Sort)			
7	Searching Algorithms (Linear Search, Binary Search)			
8	Hashing and Hash Tables			
9	Midterm			
10	Searching Algorithms (Binary Search Trees, Red Black Trees)			
11	Dynamic Programming			
12	Greedy Algorithms			
13	Elementary Graph Algorithms			
14	Graph Algorithms and NP Completeness			
15	Final			

RECOMMENDED SOURCES				
Textbook	1-Lecture Notes			
Additional Resources	1-Introduction to Algorithms, 4th Edition, Cormen, Leiserson, Rivest, Stein; MIT Press 2022. 2-Java tutorials, (<u>https://docs.oracle.com/javase/tutorial/</u>), Oracle. Start Out with Python, Global Edition, (4. edition), Gaddis, Pearson, 2021.			

MATERIAL SHARING
Documents
Assignments
Exams

ASSESSMENT				
IN-TERM STUDIES	NUM	IBER F	PERCENTAGE	
Mid-Term	1	4	10	
Quizzes	1	2	20	
Homeworks	10	4	10	
	Total	1	L00	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL 60				
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		4	10	
Total 100				

COURSE CATEGORY

Expertise/Field Courses

COURSE'S CONTRIBUTION TO PROGRAM				
No Program Learning Outcomes		Contributio n		
		12345		
1	Students have the knowledge and the skills to design and develop the complete systems for multi-media visual user interface.	Х		
2	Students have advanced the knowledge and skills to design, develop and install the application systems for multimedia.			
3	Students have the knowledge and the skills to design, develop and apply algorithms and data structures to solve the basic problems of information processing, within the framework of discrete mathematics.	х		
4	Students have the knowledge and the skills to design and develop computer applications, based on user specified requirements, using modern structured development tools and install them on various hardware platforms and deploy their usage.	Х		
5	Students have the knowledge and the skills to design and develop computer applications, based on user specified requirements, using modern object-oriented development tools and install them on various hardware platforms and deploy their usage.	Х		
6	Students know the logic of computer operating systems, the basic set of system commands, how to control access to system resources by users of different departments and how to monitor the running of jobs in the system.	×		
7	Students have the knowledge and the skills to design and develop data models serving different requirements, database applications that would	Х		

	access and process data using various types of software, including queries, reports and business applications.	
8	Students have the knowledge and the skills to design and develop business applications that would provide data access, modification and processing for data kept in enterprise database systems.	Х
9	Students have the knowledge about computer networks, and have the skills to design, develop and monitor computer networks, how to configure them and how to maintain their performance.	
10	Students have the knowledge and the skills to design and develop visual user interfaces for the web, web-based applications for n-tier client/server configurations, how to deploy them in enterprises.	

٦

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantit y	Duratio n (Hour)	Total Workload (Hour)
Course Duration (Including the exam week: 15x Total course hours/week)	14	3	42
Hours for off-the-classroom study (Pre-study, practice, review/week)	14	5	70
Homework	10	10	100
Quizzes	10	1	10
Midterm	1	10	10
Final	1	10	10
Total Work Load			242
Total Work Load / 25 (h)			9.6
ECTS Credit of the Course			10

Г